Ionic liquids (ILs) are increasingly used in elastomer technology due to unique physico-chemical properties, which are stable at the temperature of preparation and during processing of rubber compounds. The latest IL application concept is supported ionic liquid-phase (SILP) materials, where an IL film is immobilized on the solid phase. The main aim of this work was studying the influence of IL immobilized on the surface of solid supports, such as silica and carbon black, on the vulcanization process, mechanical properties, and thermal behavior of ethylene–propylene–diene (EPDM) elastomer. Application of the SILP materials enabled the control of EPDM vulcanization without deterioration of the crosslink density, damping properties, thermal stability, and resistance of the vulcanizates to thermo-oxidative aging. Slight improvements in the tensile strength and hardness of the vulcanizates were observed.