Realizing the high-precision monitoring of wheat stripe rust over a large area is of great significance in ensuring the safety of wheat production. Existing studies have mostly focused on the fusion of multi-source data and the construction of key monitoring features to improve the accuracy of disease monitoring, with less consideration for the regional distribution characteristics of the disease. In this study, based on the occurrence and spatial distribution patterns of wheat stripe rust in the experimental area, we constructed a multi-source monitoring feature set, then utilized geographical detectors for feature selection that integrates the spatial-distribution differences of the disease. The research results show that the optimal monitoring feature set selected by the geographical detectors has a higher monitoring accuracy. Based on the Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector (SVM) models, the disease monitoring results demonstrate that the monitoring feature set constructed in this study has an overall accuracy in its disease monitoring that is 3.2%, 2.7%, and 4.3% higher, respectively, than that of the ReliefF method, with Kappa coefficient higher by 0.064, 0.044, and 0.087, respectively. Furthermore, the optimal monitoring feature set obtained by the geographical detectors method exhibits a higher stability, and the spatial distribution of wheat stripe rust in the monitoring results generated by the different models demonstrates good consistency. In contrast, the features selected by the ReliefF method exhibit significant spatial-distribution differences in the wheat stripe rust among the different monitoring results, indicating poor stability and consistency. Overall, incorporating information on disease spatial-distribution differences in stripe-rust monitoring can improve the accuracy and stability of disease monitoring, and it can provide data and methodological support for regional stripe-rust detection and accurate preventions.