Force platforms and motion capture are commonly used as feedback mechanisms in exergaming; nevertheless, their therapeutic effectiveness may vary. Therefore, the primary objective of this study was to evaluate the effectiveness of commercially available virtual reality (VR) exergaming systems on balance and functional mobility, with a supplementary analysis considering the administered dose of exergaming. The search was conducted in five databases. Commercially available exergaming platforms were classified into two categories: VR exergaming with a balance board (including Wii Balance Board) and motion capture (including Xbox Kinect). Two categories of control interventions (treatment as usual [TAU] and no treatment [NT]) were extracted. The meta-analysis was performed separately for static, dynamic, and proactive balance outcomes and for the aggregated results of all included outcomes with subgroup analysis of lower, moderate, and higher doses. In total, 28 studies with 1457 participants were included. Both exergaming systems were particularly effective in improving the single leg stance outcome. VR exergaming with motion capture was found to be more effective than TAU with a standardized mean difference (SMD) of 0.48 (P = 0.006) and NT (SMD = 0.86; P = 0.02). In conclusion, commercially available VR exergaming with a motion capture feedback mechanism has demonstrated effectiveness as an intervention for balance training when compared with NT. Specifically, high doses (above 134 minutes per week) appear to be more beneficial for healthy older adults. Moreover, the findings provide some weak evidence supporting the effectiveness of VR exergaming with a balance board for improving functional mobility, particularly when compared with NT.