In this paper, we study the second-order Hamiltonian systems u¨−L(t)u+∇W(t,u)=0,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\ddot{u}-L(t)u+\\nabla W(t,u)=0, $$\\end{document} where tin mathbb{R}, uin mathbb{R}^{N}, L and W depend periodically on t, 0 lies in a spectral gap of the operator -d^{2}/dt^{2}+L(t) and W(t,x) is locally superquadratic. Replacing the common superquadratic condition that lim_{|x|rightarrow infty }frac{W(t,x)}{|x|^{2}}=+infty uniformly in tin mathbb{R} by the local condition that lim_{|x|rightarrow infty }frac{W(t,x)}{|x|^{2}}=+infty a.e. tin J for some open interval Jsubset mathbb{R}, we prove the existence of one nontrivial homoclinic soluiton for the above problem.
Read full abstract