Abstract
We obtain multiplicity results for a class of first-order superquadratic Hamiltonian systems and a class of indefinite superquadratic elliptic systems which lead to the study of strongly indefinite functionals. There is no assumption to the effect that the nonlinear terms have to satisfy the Ambrosetti–Rabinowitz superquadratic condition. To establish the existence of solutions, a new version of the symmetric mountain pass theorem for strongly indefinite functionals is presented in this paper. This theorem is subsequently applied to deal with cases where all the Palais–Smale sequences of the energy functional may be unbounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.