The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge. Specifically, the incorporation of Co2+ into the synthesis of 2D Zn2+-derived metal-organic frameworks enabled rapid dopamine polymerization and deposition. Subsequently, the composite nanoflower (FHN), characterized by an average size of ≈80 nm and petal thickness of ≈6 nm, is formed through the sealing of micropores and simultaneous cross-linking of nanosheets. The pronounced reduction in thermal conductivity of FHN, and superposition of interpetal thermal fields under a pulsed laser (PL), lead to enhanced PA effect and membrane permeability. Thereby, nanosensors efficiently escape from lysosomes resulting in synergistic fluorescence activation by dual-factors (ATP, miRNA-21) and DNA probes installed on FHN. A subsequently high tumor-to-normal tissue signal ratio (TNR) of 17.4 lead to precise guidance of NIR irradiation for efficient MRD eradication and recurrence inhibition. This study provides a new approach for high-contrast identification and precise ablation of MRD based on the synergistic response of endogenous and exogenous factors.
Read full abstract