Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, a superdurable full-life superhydrophobic composite block is designed and fabricated by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for the composite block, which features a high compressive strength of up to ≈7.4MPa, and ultralow Taber abrasion of down to ≈0.567mm after withstanding 50000 cycles, and highly efficient water harvesting capability of up to ≈3114.3mg min-1 cm-2 at a supercooling degree of 40 K. This robust material system provides a novel strategy to design superhydrophobic materials capable of withstanding extreme conditions, including high temperature, humidity, pressure, and abrasion.