Droplet impacting on a sufficiently heated powder bed resembles those on a superheated solid surface, as the surface deformation is mediated by the spontaneously generated vapor flow from the bottom surface of the droplet. This emerged impacting behavior is denoted as vapor-mediated impact to differentiate from the wetting impact, which involves the wetting and absorption of the particles due to capillarity. We systematically vary the impacting velocity and the temperature of the powder bed to characterize the impacting dynamics for these two behaviors. For the vapor-mediated impact, the contact time and the maximum spreading diameter are found to have the same scaling laws derived for impact on the superheated surface. We construct a phase diagram of the impacting behaviors based on experimental observation, and propose a simplified model to predict the transition between these two behaviors. The predicted values match well with the experimental results, suggesting the proposed model captures the physical mechanism of the vapor-mediated impact.
Read full abstract