Oxygen consumption is one of the factors that contributes to the high treatment cost of a supercritical water oxidation (SCWO) system. In this work, we proposed an oxygen recovery (OR) process for an SCWO system based on the solubility difference between oxygen and CO2 in high-pressure water. A two-stage gas–liquid separation process was established using Aspen Plus software to obtain the optimized separation parameters. Accordingly, energy consumption and economic analyses were conducted for the SCWO process with and without OR. Electricity, depreciation, and oxygen costs contribute to the major cost of the SCWO system without OR, accounting for 46.18, 30.24, and 18.01 $·t−1, respectively. When OR was introduced, the total treatment cost decreased from 56.80 $·t−1 to 46.17 $·t−1, with a reduction of 18.82%. Operating cost can be significantly reduced at higher values of the stoichiometric oxygen excess for the SCWO system with OR. Moreover, the treatment cost for the SCWO system with OR decreases with increasing feed concentration for more reaction heat and oxygen recovery.