A 2D mathematical model is proposed for the modification of an iron-based alloy with refractory nanosized particles. Numerical simulation of the processes during the modification of the surface layer of the substrate metal using the energy of a laser pulse has been carried out. Within the framework of the proposed model, the processes of heating and melting of metal on a substrate covered with a layer of nanosized refractory particles penetrating into the molten metal, convective heat transfer in the melt, and solidification after the end of the pulse are considered. Metal melting is considered in the Stefan approximation, and when the melt is cooled, the model of heterogeneous nucleation and subsequent crystallization is used. The fluid flow is described by the Navier-Stokes equations in the Boussinesq approximation. The distribution of nanoparticles in the melt is modeled by moving markers. Based on the results of calculations, the mode of pulsed laser action is determined, in which a flow is formed for a homogeneous distribution of particles of the modifying substance in the presence of a surfactant in the metal. The volume of the solid phase formed around the nucleus determines the size of the grain structure in the solidified alloy. The liquidus temperature changes depending on the concentration of dissolved carbon in the melt. In the numerical simulation of the solidification of the surface layer of the metal, it was found that the conditions of nucleation and crystallization differ significantly in the volume of the melt. It is determined that the duration of nucleation in a supercooled melt is several tens of microseconds. The maximum number of crystallization centers occurs in areas where heat removal occurs most rapidly. With the growth of the solid phase in the melt and the release of the latent heat of crystallization, the value of supercooling decreases, the nucleation stops and the number of formed crystallization centers does not change further. The distribution of the dispersion of the crystal structure over the volume of the melted metal is estimated. It was found that as the melt cools, sequential-volume crystallization occurs.
Read full abstract