Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) infected individual outside mainland China. Here we delineated the course of the COVID-19 outbreak together with the timeline of the control measures and public health policies employed by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 transmission in Thailand using a stochastic modeling approach. Our stochastic model incorporated the effects of individual heterogeneity in infectiousness on disease transmission, which allows us to capture relevant features of superspreading events. We found that our model could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand. The model predicted that at the end of the first wave, the number of cumulative confirmed cases was 3091 (95%CI: 2782–3400). We also estimated the time-varying reproduction number (Rt) during the first epidemic wave. We found that after implementing the nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below one in less than one month, indicating that the control measures employed by the Thai government during the first COVID-19 epidemic wave were effective. Finally, the effects of transmission heterogeneity and control measures on the likelihood of outbreak extinction were also investigated.