The Pauli Exclusion Principle (PEP) appears from fundamental symmetries in quantum field theories, but its physical origin is still to be understood. High-precision experimental searches for small PEP violations permit testing key assumptions of the Standard Model with high sensitivity. We report on a dedicated measurement with Gator, a low-background, high-purity germanium detector operated at the Laboratori Nazionali del Gran Sasso, aimed at testing PEP-violating atomic transitions in lead. The experimental technique, relying on forming a new symmetry state by introducing electrons into the pre-existing electron system through a direct current, satisfies the conditions of the Messiah-Greenberg superselection rule. No PEP violation has been observed, and an upper limit on the PEP violation probability of β2/2<4.8·10-29\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta ^2/2 < 4.8 \\cdot 10^{-29}$$\\end{document} (90% CL) is set. This improves the previous constraint from a comparable measurement by more than one order of magnitude.