Abstract

We extend the entanglement bootstrap program to (3+1)-dimensions. We study knotted excitations of (3+1)-dimensional liquid topological orders and exotic fusion processes of loops. As in previous work in (2+1)-dimensions [Ann. Phys. 418, 168164 (2020), Phys. Rev. B 103, 115150 (2021)], we define a variety of superselection sectors and fusion spaces from two axioms on the ground state entanglement entropy. In particular, we identify fusion spaces associated with knots. We generalize the information convex set to a new class of regions called immersed regions, promoting various theorems to this new context. Examples from solvable models are provided; for instance, a concrete calculation of knot multiplicity shows that the knot complement of a trefoil knot can store quantum information. We define spiral maps that allow us to understand consistency relations for torus knots as well as spiral fusions of fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.