We present a local convergence analysis for some families of fourth and sixth-order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies [V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing 45 (1990) 355–367; C. Chun, P. Stanica and B. Neta, Third order family of methods in Banach spaces, Comput. Math. Appl. 61 (2011) 1665–1675; J. M. Gutiérrez and M. A. Hernández, Recurrence relations for the super-Halley method, Comput. Math. Appl. 36 (1998) 1–8; M. A. Hernández and M. A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method, J. Comput. Appl. Math. 126 (2000) 131–143; M. A. Hernández, Chebyshev’s approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–455; M. A. Hernández, Second-derivative-free variant of the Chebyshev method for nonlinear equations, J. Optim. Theory Appl. 104(3) (2000) 501–515; J. L. Hueso, E. Martinez and C. Teruel, Convergence, efficiency and dynamics of new fourth and sixth-order families of iterative methods for nonlinear systems, J. Comput. Appl. Math. 275 (2015) 412–420; Á. A. Magre nán, Estudio de la dinámica del método de Newton amortiguado, Ph.D. thesis, Servicio de Publicaciones, Universidad de La Rioja (2013), http://dialnet.unirioja.es/servlet/tesis?codigo=38821 ; J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970); M. S. Petkovic, B. Neta, L. Petkovic and J. Džunič, Multi-Point Methods for Solving Nonlinear Equations (Elsevier, 2013); J. F. Traub, Iterative Methods for the Solution of Equations, Automatic Computation (Prentice-Hall, Englewood Cliffs, NJ, 1964); X. Wang and J. Kou, Semilocal convergence and [Formula: see text]-order for modified Chebyshev–Halley methods, Numer. Algorithms 64(1) (2013) 105–126] have used hypotheses on the fourth Fréchet derivative of the operator involved. We use hypotheses only on the first Fréchet derivative in our local convergence analysis. This way, the applicability of these methods is extended. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples illustrating the theoretical results are also presented in this study.