Abstract Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si iv 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O iv 1400/1401 Å and Si iv 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O iv 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.
Read full abstract