Water stress greatly determines plant yield as it affects plant metabolism, photosynthesis rate, chlorophyll content index, number of leaves, physiological, biochemical compound, and vegetative growth. The research aimed to detect and classify water stress of cultured Sunagoke moss into several categories i.e. dry, semi-dry, wet, and soak by using a low-cost commercial visible light camera combined with a deep learning model. Cultured Sunagoke moss is a commercial product which has the potential use as rooftop-greening and wall-greening material. This research compared the performance of four convolutional neural network models, such as SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The best convolutional neural network model according to the training and validation result was ResNet50 with RMSProp optimizer, 30 epoch, and 128 mini-batch size; this also gained an accuracy rate at 87.50%. However, the best result of the convolutional neural network model on data testing using confusion matrices on different data sample was ResNet50 with Adam optimizer, 30 epoch, 128 mini-batch size, and average testing accuracy of 94.15%. It can be concluded that based on the overall results, convolutional neural network model seems promising as a smart irrigation system that real-time, non-destructive, rapid, and precise method when controlling water stress of plants.