Generally, unmanned aerial vehicles and micro aerial vehicles depend on batteries or conventional fuel as a source of energy. These sources of energy have limited flight time, relatively high cost, and also a certain level of pollutants. Solar energy applied to aerial vehicles is an excellent alternative way to overcome other sources of energy’s disadvantage. This study aimed to design a solar-powered aerial vehicle to achieve continuous flight on Earth. The efficiency of the solar system is related to the absorbed sun rays. The concept of an anti-symmetric N-shaped morphing wing is a good idea to increase the collected solar energy during the daily sun path. But this comes with the penalty of side forces and moments due to the anti-symmetry of the wing. This paper introduces a study for two parameters that strongly affect the aerodynamics of the N-shaped morphing wing; the dihedral part angle and the dihedral part length. The impact of the dihedral angle decreases the lift coefficient and increases the drag coefficient. The impact of the morphing wing on the aircraft performance is also considered.