The evaluation of East Asian summer monsoon (EASM) simulations could improve our understanding of Asian monsoon dynamics and climate simulations. In this study, by using Phase 6 of the Coupled Model Intercomparison Project (CMIP6) experiments of the Atmospheric Model Intercomparison Project (AMIP) and historical runs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model, the model simulation skill for the interannual variability in the EASM was determined. According to multivariate empirical orthogonal function (MV-EOF) analysis, the major mode of the EASM mainly emerged as a Pacific-Japan pattern in the western Pacific accompanied by a local anticyclonic anomaly with a total variance of 24.6%. The historical experiment could suitably reproduce this spatial pattern and attained a closer total variance than that attained by the AMIP experiment. The historical experiment could also better simulate the time frequency of the EASM variability than the AMIP experiment. However, the phase of principal component 1 (PC1) was not suitably reproduced in the historical experiment since no initialization procedure was applied at the beginning of the integration in the historical simulation process, whereas the sea surface temperature (SST) was preset in the AMIP experiment. Further analysis revealed that air–sea interactions in the Indian Ocean and tropical western Pacific were important for the model to provide satisfactory EASM simulations, while El Niño–Southern Oscillation (ENSO) simulation was possibly related to the climate variability in the EASM simulations, which should be further analyzed.摘要对东亚夏季季风(EASM)模拟的评估可以提高我们对亚洲季风动力和气候模拟的理解. 在这项研究中, 通过使用中国科学院(CAS)全球海洋-大气-陆地系统(FGOALS-f3-L)模式参加的第六次耦合模式相互比较计划(CMIP6)中的大气模式相互比较计划(AMIP)和历史(historical)试验, 明确了EASM的年际变率的模拟能力. 通过多变量经验正交函数(MV-EOF)分析发现, 观测的EASM的主导模态为西太平洋上的太平洋-日本模态, 并伴有局部反气旋异常. 主导模态的方差贡献率为24.6%. 历史(historical)试验可以基本再现这种空间模态, 其方差贡献率较AMIP试验更接近于观测. 与AMIP试验相比, 历史(historical)试验还能更好地模拟EASM变率的时间频率. 然而, 由于历史(historical)模拟没有在积分开始时应用初始化过程, 而AMIP试验受到海表面温度(SST)的约束, 因此主成分(PC1)的位相在历史(historical)试验中没有得到较好地再现. 进一步分析发现, 印度洋和西太平洋热带地区的海气相互作用对EASM的模拟非常重要, 而EASM气候变率的模拟可能与厄尔尼诺-南方涛动(ENSO)的模拟能力有关, 这值得进一步分析.