We consider the solution of the subset sum problem based on a parallel computer consisting of self-propelled biological agents moving in a nanostructured network that encodes the computing task in its geometry. We develop an approximate analytical method to analyze the effects of small errors in the nonideal junctions composing the computing network by using a Gaussian confidence interval approximation of the multinomial distribution. We concretely evaluate the probability distribution for error-induced paths and determine the minimal number of agents required to obtain a proper solution. We finally validate our theoretical results with exact numerical simulations of the subset sum problem for different set sizes and error probabilities, and discuss the scalability of the nonideal problem using realistic experimental error probabilities.
Read full abstract