The effect of temperature and light intensity on the polar lipidome of endophytic brown algae Streblonema corymbiferum and Streblonema sp. in vitro was investigated. More than 460 molecular species have been identified in four glycoglycerolipids classes, five phosphoglycerolipids classes and one betaine lipid class. The lipids glucuronosyldiacylglycerol and diacylglyceryl-N,N,N-trimethyl-homoserine were found in the algae of the order Ectocarpales for the first time. A decrease in cultivation temperature led to an increase in the unsaturation level in all classes of polar lipids. Thus, at low temperatures, the content of 18:4/18:4 monogalactosyldiacylglycerol (MGDG), 20:5/18:4 digalactosyldiacylglycerol (DGDG), 18:3/16:0 sulfoquinovosyldiacylglycerol (SQDG), 18:3/18:3 and 18:3/18:4 phosphatidylglycerol (PG), 20:4/20:5 and 20:5/20:5 phosphatidylethanolamine (PE), 14:0/20:5, 16:0/20:5 and 20:5/20:5 phosphatidylcholine (PC), 20:5/20:4 phosphatidylhydroxyethylglycine and 18:1/18:2 DGTS increased. At high temperatures, an increase in the content of chloroplast-derived MGDG, DGDG and PG was observed. Both low and high light intensities caused an increase in 20:5/18:3 MGDG and 18:3/16:1 PG. At low light intensity, the content of DGDG with fatty acid (FA) 18:3 increased, and at high light intensity, it was with FA 20:5. The molecular species composition of extraplastid lipids also showed a dependence on light intensity. Thus, the content of PC and PE species with C20-polyunsaturated FA at both sn-positions, 18:1/18:1 DGTS and 16:0/18:1 phosphatidylinositol increased. Low light intensity induced a significant increase in the content of chloroplast-derived 18:1/16:1 phosphatidylethanolamine.