Wine industry has faced pressure to innovate its products. Saccharomyces cerevisiae has been the traditional yeast for producing alcoholic beverages, but interest has shifted from the conventional S. cerevisiae to non-Saccharomyces yeasts for their biotechnological potential. Among these, Torulaspora delbrueckii is particularly notable for its ability to enrich wine with novel flavours. During winemaking, sulphites are added to suppress spoilage microorganisms, making sulphite tolerance a valuable characteristic of wine yeasts. Adaptive laboratory evolution in liquid and solid media improved sulphite resistance in two T. delbrueckii strains, achieving, in the best case, a fourfold increase from 0.50 to 2.00 mM of sodium metabisulphite, highlighting the potential of these evolve strains for winemaking applications. Genomic analysis revealed SNPs/InDels in all the strains, including a novel unique missense mutation common to the four evolved isolates, but absent from the parental strains, located in chromosome VIII (protein TDEL0H03170, homologue of S. cerevisiae MPH1). These genes code for a protein catalogued as an ATP-dependent DNA helicase, known for its role in maintaining genome stability by participating in DNA repair pathways. We propose that this valine-to-serine mutation, common to all the evolved isolates, helps the evolved strains repair sulphite-induced DNA damage more effectively.
Read full abstract