Elevated sulfate levels in eutrophic lakes have been observed to induce the release of endogenous phosphorus. While previous studies have predominantly examined its impact on iron-bound phosphorus (FeP), the influence on organic phosphorus (OP), a crucial active phosphorus component in sediments, remains poorly understood. In this study, mesocosms were established with lactate supplementation and varying sulfate concentrations to explore sulfate reduction and its impacts on phosphorus mobilization in freshwater sediments. Lactate addition induced hypoxia and provided substrates, thereby stimulating sulfate reduction with a decline of sulfate levels, an increase of sulfide concentrations, and fluctuations of sulfate-reducing bacteria. Meanwhile, concentrations of total dissolved phosphorus and phosphate were dramatically promoted during lactate decomposition, with a higher sulfate concentration associated with greater phosphorus elevation, correlating with the decrease of total phosphorus in sediment. The increase in phosphorus of the overlying water was partly attributed to FeP release from the sediment, confirmed by a decrease in its sediment content. FeP release was ascribed to dissimilatory reduction of iron oxides or chemical reduction mediated by sulfides in anoxic sediments, leading to the desorption and subsequent release of phosphorus. Evidences included the proliferation of iron-reducing bacteria, a decrease in Fe(II) concentrations in sediment pore- water, and the continuous accumulation of solid iron sulfides in surface sediments. Furthermore, OP mineralization in sediment also contributed to the increase in phosphorus in water columns, confirmed by a reduction in its content and the abundance of fermentation bacteria in surface sediment. Notably, the decrease in OP content accounted for >80 % of the total phosphorus reduction in surface sediment in the end. Thus, sulfur cycling plays a critical role in iron and phosphorus cycling, significantly stimulating not only the mobilization of FeP but also OP in sediments, with OP mineralization potentially being the primary contributor to endogenous phosphorus release.