Abstract

The early Paleozoic Era (∼540–420 Ma) was an interval of profound biogeochemical changes including increasing oxygen (O2) and the onset of bioturbation (sediment mixing by animals). It is hypothesized that incipient bioturbation caused a monotonic decrease in sedimentary burial of pyrite (FeS2), which would have slowed atmospheric O2 accumulation. However, pyrite accumulation can exhibit complex responses to dynamic, low-O2 environmental conditions. To assess pyrite burial in a potential modern analogue to early Paleozoic environments, we collected sediment cores from the Chesapeake Bay, an estuary with multiple gradients in sulfate concentration, hypoxia intensity, organic carbon flux and lability, and bioturbation. Results indicate that pyrite accumulation is maximized not under strong sulfate depletion in highly reducing sediments, but rather in sediments that occupy the mid-range of sulfate–chloride ratios. This probably occurs through efficient replenishment of pore water sulfate and/or through the generation of sulfur redox intermediates, which promote pyrite formation via the polysulfide reaction pathway. In light of these results and in contrast to earlier models, we hypothesize that mild early Paleozoic bioturbation temporarily increased pyrite burial efficiency by stimulating higher sulfate reduction rates and increasing sedimentary sulfide retention. Compiled sulfur and carbon data from a geochemical database indicate that median sulfur-carbon ratios of fine-grained marine siliciclastic rocks increased from the Ediacaran through the Ordovician, then decreased and became much less variable from the Silurian onward. Thus, the Cambrian and Ordovician Periods may constitute a distinct interval of the Proterozoic-Phanerozoic transition in which bioturbation temporarily accelerated O2 buildup. This transition probably ended in the Silurian, when pO2 rose to sufficient levels to homogenize sedimentary carbon–sulfur cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.