Abstract

This study examines the sulfur isotope record of seawater sulfate proxies using δ34S and Δ33S to place constraints on the average global fractionation (Δ34Spy) associated with pyrite formation and burial and the exponent λ that relates variations of the 34S/32S to variations of the 33S/32S. The results presented here use an analysis of the sulfur isotope record from seawater sulfate proxies and sedimentary sulfide to extract this quantity as the arithmetic difference between δ34S of seawater sulfate and contemporaneous sulfide. It also uses an independent method that draws on inferences about the Δ33S evolution of seawater sulfate to evaluate this further. These two methods yield similar results suggesting that Δ34Spy and λ changed over the course of the Phanerozoic from slightly lower values of Δ34Spy (lower values of λ) in the early Phanerozoic (Cambrian–Permian) to higher values of Δ34Spy (higher values of λ) starting in the Triassic. This change of Δ34Spy and the exponent λ is interpreted to reflect a change in the proportion of sulfide that was reoxidized and processed by bacterial disproportionation on a global scale. The revised record of Δ34Spy also yields model pyrite burial curves making them more closely resemble model evolution curves for other element systems and global sea level curves. It is suggested that possible links to sea level may occur via changes in the area of submerged continental shelves which would provide additional loci for pyrite burial. The slightly different constraints used by the two approaches to calculate this fractionation may allow for additional information to be obtained about the sulfur cycle with future studies. For instance, the correspondence of these results suggests that the inferred variation of 34S/32S of pyrite is real, and that there is no significant missing sink of fractionated sulfur at the resolution of the present study (such as might be associated with organic sulfur). Burial of organic sulfur may, however, have been important at some times in the Phanerozoic and shorter timescale deviations between results provided by these methods may be observed with higher resolution sampling. If observed, this would suggest either that the record for pyrite (or less likely sulfate) is biased, or that another sink (possibly as organic sulfur) was important during these times in the Phanerozoic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call