Polysaccharides from sea cucumbers are known for their biological activities, but little is known about those from sea cucumber viscera. The present study isolated a sulfated polysaccharide (SCVP-2) from the viscera of Apostichopus japonicas, which had a molecular weight of 209.1 kDa. SCVP-2 comprised 66.3 % total sugars, 2.1 % uronic acid, 4.5 % proteins, and 25.5 % sulfate groups, containing glucosamine, galactosamine, glucose, galactose, and fucose. FT-IR and NMR analyses identified SCVP-2 as a fucoidan sulfate with sulfation patterns of the fucose branches as Fuc2S, Fuc4S, and Fuc0S. SEM and AFM analyses showed irregular clusters and linear conformations. SCVP-2 demonstrated strong anti-inflammatory properties both in vitro and in vivo. In lipopolysaccharide (LPS)-induced inflammation in macrophage RAW264.7 cells, SCVP-2 significantly reduced nitric oxide (NO) and cytokine secretion (IL-1β, IL-6, TNF-α). Additionally, it downregulated the expression of these cytokine genes. Furthermore, the anti-inflammatory mechanism of SCVP-2 was related to the inhibition of the MAPKs and NF-κB pathways. SCVP-2's anti-inflammatory capacity was confirmed in acute inflammation models, including xylene-induced ear swelling and acetic acid-induced peritoneal capillary permeability, and in high-fat diet-induced systemic low-grade chronic inflammation. In conclusion, SCVP-2 exhibits significant anti-inflammatory activity, suggesting its potential for development as a functional food ingredient or therapeutic agent for inflammation-related diseases.