The behavior of linear alkylbenzene sulfonate (LAS) and sulfophenyl carboxylate (SPC) biointermediates in a pilot subsurface flow constructed wetland (SFCW) is reported for the first time. The effects of wetland configuration and operation on their treatment efficiency were investigated. The pilot SFCW constituted by eight beds of 55 m2 with different aspect ratios (1 x 1; 1.5 x 1; 2 x 1; 2.5 x 1), two water depths (i.e., 0.47 and 0.27 cm) at 5 cm below surface and two medium sizes (i.e., D60 = 10 mm and 3.5 mm) planted with Phragmites sp. That SFCW pilottreats urban wastewater (i.e., 200 inhabitants) and was operated at four hydraulic loading rates (HLRs) (20, 27, 36, and 45 mm d(-1)). Influent and effluent sampling was carried out from May 2001 to January 2002 with a weekly pattern. Main results were as follows: (i) water depth has a major influence on the performance of SFCW for the LAS removal, and HLR shows significant effect on SPC evolution; (ii) water temperature has a significant effect on the LAS evolution; (iii) biodegradation of LAS and SPC can occur under sulfate-reducing environment and mixed conditions (i.e., sulfate-reducing and denitrification), but aerobic respiration cannot be excluded; and (iv) C13 LAS homologues were generally removed in higher extent than the shorter alkyl chain counterparts. In the most appropriate conditions, LAS and SPC can be biodegraded up to 71% and 11%, respectively, in the pilot SFCW evaluated.