AbstractA new chemical and structural interpretation of K5Ce2(SO4)6·H2O (I) and a redetermination of the structure of K2Ce(SO4)3·H2O (II) is presented. The mixed‐valent compound I crystallizes in the space group C2/c with a = 17.7321(3), b = 7.0599(1), c = 19.4628(4) Å, β = 112.373(1)° and Z = 4. Compound I has been discussed earlier with space group Cc. In the structure of I, there are pairs of edge sharing cerium polyhedra connected by sulfate oxygen atoms in the μ3 bonding mode. These cerium dimers are linked through edge and corner sharing sulfate bridges, forming layers. The layers are joined by potassium ions which together with the water molecules are placed between the layers. No irregularity in the distribution of the CeIII and CeIV to cause the lost of a crystallographic center of symmetry was detected. We suggest that the charge exerted by the extra f1 electron for every cerium dimer is delocalized over the Ce1–O2–Ce2 moiety in a non‐bonding mode. As a result, the oxidations state of each cerium ion is a mean value between III and IV at each atomic position. Compound II crystallizes in the space group C2 with a = 20.6149(2), b = 7.0742(1), c = 17.8570(1) Å, β = 122.720(1)° and Z = 8. The hydrogen atoms have been located and the absolute structure has been established. Neither hydrogen atom positions nor anisotropic displacement parameters were given in the previous reports. In compound II, the cerium polyhedra are connected by edge and corner sharing sulfate groups forming a three‐dimensional network. This network contains Z‐shaped channels hosting the charge compensating potassium ions.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access