The structure of hyperspectral images reveals spectral responses that would seem ideal candidates for compression by vector quantization. This paper outlines the results of an investigation of lossless vector quantization of 224-band Airborne/Visible Infrared imaging Spectrometer (AVIRIS) images. Various vector formation techniques are identified and suitable quantization parameters are investigated. A new technique, mean-normalized vector quantization (M-NVQ), is proposed which produces compression performances approaching the theoretical minimum compressed image entropy of 5 bits/pixel. Images are compressed from original image entropies of between 8.28 and 10.89 bits/pixel to between 4.83 and 5.90 bits/pixel.
Read full abstract