Convective heat and mass transport of radiative Williamson hybrid [Formula: see text] nanofluid (NF) by a Riga surface with the novel features of Cattaneo–Christov double-diffusion has been investigated. Thermal contributions of internal heat mechanism and Arrhenius energy in Darcy–Forchheimer medium have also been incorporated in the modeling. Mathematical modeling has been completed by using suitable mathematical expressions for thermophysical features of hybrid nanofluid (HNF). Transport partial differential equations (PDEs) have been transformed into ordinary differential equations (ODEs) by means of similarity variables. Numerical approximation of the transformed system has been obtained by using shooting-based Runge–Kutta–Fehlberg approach. Results have been presented through various graphs and discussed physically in detail. Solution is validated for limited cases. Concentration of the hybrid mixture is reduced for progressive concentration-relaxation parameter. Temperature is alleviated for developing thermal-relaxation parameter. Nusselt number is observed to be higher for Williamson HNF than simple ordinary NF.
Read full abstract