WO3, with a high light absorption capacity and a suitable band structure, is considered a promising photoanode material for photoelectrochemical water splitting. However, the poor photoinduced electron-hole separation efficiency limits its application. Herein, we report an effective strategy to suppress electron-hole recombination by introducing oxygen vacancies (OV) on the surface of a WO3 photoanode through NaH2PO2 treatment. An OV-enriched amorphous surface layer with a thickness of 4 nm is formed after NaH2PO2 treatment, which increases the charge carrier density and enlarges the electrochemical surface area of the photoanode. The charge separation and surface injection efficiencies are both improved after NaH2PO2 treatment, and the charge transfer process of the photoanode is accelerated consequently. The current density of the modified WO3 photoanode reaches 0.96 mA cm-2 at 1.23 V.