Abstract

Photocatalytic generation of H₂O₂, involving both oxygen reduction and water oxidation without sacrificial agents, necessitates maximized light absorption, suitable band structure, and efficient carrier transport. Leveraging the redox capacity this study designs and constructs a step-scheme heterostructured SnO₂/Zn₃In₂S₆ catalyst for H₂O₂ production from seawater under ambient conditions for the first time. This photocatalyst demonstrates a remarkable H₂O₂ production rate of 43.5µmol g⁻¹ min⁻¹ without sacrificial agents, which can be increased to 80.7µmol g⁻¹ min⁻¹ with additional O₂ injection. Extensive in situ and ex situ characterizations, supported by theoretical calculations, reveal efficient carrier transport and robust redox ability, enabling complete photosynthesis of H₂O₂ at the oxidation and reduction sites in the S-scheme SnO₂/Zn₃In₂S₆ heterojunction. Furthermore, it is hypothesized that substituting SnO₂ with other semiconductors such as TiO₂, WO₃, and BiVO₄ can all form S-scheme and the results confirm the feasibility of such catalyst design. Additionally, it demonstrates the recycling and further utilization of the H₂O₂ produced. These findings offer new insights into the design of heterostructure catalyst architectures and present new opportunities for H₂O₂ production from seawater at ambient conditions without sacrificial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.