Brazil is the second-largest ethanol producer in the world, primarily using sugar cane as feedstock. To foster biofuel production, the Brazilian government implemented a national biofuel policy, known as RenovaBio, in which greenhouse gas (GHG) emission reduction credits are provided to biofuel producers based on the carbon intensities (CI) of the fuels they produce. In this study, we configured the GREET model to evaluate life cycle GHG emissions of Brazilian sugar cane ethanol, using data from 67 individual sugar cane mills submitted to RenovaBio in 2019/2020. The average CI per megajoule of sugar cane ethanol produced in Brazil for use in the U.S. was estimated to be 35.2 g of CO2 equivalent, a 62% reduction from U.S. petroleum gasoline blendstock without considering the impacts of land use change. The three major GHG sources were on-field N2O emissions (24.3%), sugar cane farming energy use (24.2%), and sugar cane ethanol transport (19.3%). With the probability density functions for key input parameters derived from individual mill data, we performed stochastic simulations with the GREET model to estimate the variations in sugar cane ethanol CI and confirmed that despite the larger variations in sugar cane ethanol CI, the fuel provided a robust GHG reduction benefit compared to gasoline blendstock.
Read full abstract