Furan derivatives are part of nearly all food aromas. They are mainly formed by thermal degradation of carbohydrates and ascorbic acid and from sugar-amino acid interactions during food processing. Caramel-like, sweet, fruity, nutty, meaty, and burnt odor impressions are associated with this class of compounds. In the presented work, structure-activity relationship (SAR) investigations are performed on a series of furan derivatives in order to find structural subunits, which are responsible for the particular characteristic flavors. Therefore, artificial neural networks are applied on a set of 35 furans with the aroma categories "meaty" or "fruity" to calculate a classification rule and class boundaries for these two aroma impressions. By training a multilayer perceptron network architecture with a backpropagation algorithm, a correct classification rate of 100% is obtained. The neural network is able to distinguish between the two studied groups by using the following significant descriptors as inputs: number of sulfur atoms, Looping Centric Information Index, Folding Degree Index and Petitjean Shape Indices. Finally, the results clearly demonstrate that artificial neural networks are successful tools to investigate non-linear qualitative structure-odor relationships of aroma compounds.
Read full abstract