The early detection of a kick and mitigation with appropriate well control actions can minimize the risk of a blowout. This paper proposes a downhole monitoring system, and presents a dynamic numerical simulation of a compressible two-phase flow to study the kick dynamics at downhole during drilling operation. This approach enables early kick detection and could lead to the development of potential blowout prevention strategies. A pressure cell that mimics a scaled-down version of a downhole is used to study the dynamics of a compressible two-phase flow. The setup is simulated under boundary conditions that resemble realistic scenarios; special attention is given to the transient period after injecting the influx. The main parameters studied include pressure gradient, raising speed of a gas kick, and volumetric behavior of the gas kick with respect to time. Simulation results exhibit a sudden increase of pressure while the kick enters and volumetric expansion of gas as it flows upward. This improved understanding helps to develop effective well control and blowout prevention strategies. This study confirms the feasibility and usability of an intelligent drill pipe as a tool to monitor well conditions and develop blowout risk management strategies.