ABSTRACTAn investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.
Read full abstract