This study evaluated the feasibility of transgenic Arabidopsis engineered to express the bacterial heavy metal transporter MerC for the phytoremediation of mercury pollution. MerC, MerC–SYP121, or MerC–AtVAM3 proteins were found to be expressed in leaf segments of transgenic plants using an anti-MerC antibody immunostaining method. By sucrose density gradient centrifugation and immunoblotting analyses, MerC, MerC–SYP121, and MerC–AtVAM3 were found to localized in the Golgi apparatus, plasma membrane, and vacuole membrane, respectively. Transgenic Arabidopsis plants that expressed merC–SYP121 were more resistant to mercury and accumulated significantly more of this metal than wild-type Arabidopsis. These results demonstrated that expression of the bacterial heavy metal transporter MerC promoted the transport and accumulation of mercury in transgenic Arabidopsis, which may be a useful method for improving plants for the phytoremediation of mercury pollution.
Read full abstract