Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from Karnozin EXTRA® supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress. Treatment with Karnozin EXTRA® (concentration of L-carnosine were 2, 5 and 10mM) for 24hours gradually decreased the number of cells and changed their morphological features. In both cell lines, a dose-dependent reduction of cell viability was recorded compared to the control group. Also, experimental groups showed a concentration-dependent decrease in fluorescence intensity of SOD2 expressions in MCF-7, while in MRC-5 we noticed higher fluorescence intensity in Carnosine 2mM group. Treated cells, in both cell lines, showed different intensity of iNOS cytoplasmic immunopositivity in a concentration-dependent manner. In all experimental groups, we noticed an increased expression of marker of oxidative stress-cytochrome P450 2E1 (CYP2E1). The effects of Karnozin EXTRA® capsule on mitochondrial respiration, assessed with the Clark-type electrode, were manifested as a reduction of: basal cell respiration, maximum capacity of electron transport chain and mitochondrial ATP-linked respiration. Also, significant decrease in the activity of complex I (NADH-ubiquinone oxidoreductase), complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) was observed in both cell lines. Bearing in mind that Karnozin EXTRA® is a potential regulator of energy metabolism of MCF-7 and MRC-5, these results provide a good basis for further preclinical and clinical research.
Read full abstract