Background Recent biomedical research has emphasized the potential of biocomposite materials for medicinal purposes. This work investigates the combination of magnesium oxide (MgO)-doped chitosan and polyvinyl alcohol (PVA) with extracts from Catharanthus roseus, a medicinal plant renowned for its abundant alkaloid content and therapeutic advantages. The antioxidant, anti-inflammatory, and anti-cancer characteristics of this unique biocomposite material are being studied better to understand its prospective uses in biomedicine. Aim The goal of this study is to investigate the in vitro oxidative, anti-inflammatory, and anti-cancer properties of a biocomposite made of MgO-doped chitosan and PVA, combined with an extract from C. roseus. Materials and methods The biocomposite was made by blending chitosan and PVA in equal proportions and adding MgO nanoparticles to C. roseus extract. The surface morphology was analysed using scanning electron microscopy (SEM). The antioxidant activity was measured using the H2O2 test, the anti-inflammatory activity was identified using the egg albumin assay, and the anti-cancer activity was analyzed using the MTT assay on MCF-7 breast cancer cell lines. In addition, cell morphology investigations were performed to evaluate any alterations after treatment. Results The SEM investigation showed clearly defined and sleek nanoparticles. The biocomposite demonstrated notable antioxidant activity, with inhibition percentages escalating in proportion to the concentration. The anti-inflammatory assays demonstrated inhibition percentages comparable to diclofenac, reaching approximately 90% at the maximum concentration. The MTT experiment revealed that the viability of MCF-7 cells decreased in a manner that was dependent on the dose administered. The IC-50 value, which represents the concentration required to inhibit 50% of cell viability, was determined to be 60 µg/mL. The morphological examinations demonstrated cytotoxic effects, such as cell shrinkage and membrane blebbing, which indicate the successful initiation of apoptosis. Conclusion The biocomposite of chitosan/PVA doped with MgO, combined with C. roseus extract, has shown significant antioxidant, anti-inflammatory, and anti-cancer characteristics. These findings indicate that it has the potential to be used in therapy, particularly for treating illnesses related to oxidative stress, inflammatory disorders, and cancer. Future research should focus on improving formulation and delivery systems for therapeutic applications, with the support of in vivostudies and clinical trials.
Read full abstract