BackgroundThe subthalamic nucleus (STN) is an effective deep brain stimulation target for Parkinson disease (PD) and obsessive-compulsive disorder and has been implicated in reward and motivational processing. In this study, we assessed the STN and prefrontal oscillatory dynamics in the anticipation and receipt of reward and loss using a task commonly used in imaging. Materials and MethodsWe recorded intracranial left subthalamic local field potentials from deep brain stimulation electrodes and prefrontal scalp electroencephalography in 17 patients with PD while they performed a monetary incentive delay task. ResultsDuring the expectation phase, enhanced left STN delta-theta activity was observed in both reward and loss vs neutral anticipation, with greater STN delta-theta activity associated with greater motivation specifically to reward. In the consummatory outcome phase, greater left STN delta activity was associated with a rewarding vs neutral outcome, particularly with more ventral contacts along with greater delta-theta coherence with the prefrontal cortex. We highlight a differential activity in the left STN to loss vs reward anticipation, demonstrating a distinct STN high gamma activity. Patients with addiction-like behaviors show lower left STN delta-theta activity to loss vs neutral outcomes, emphasizing impaired sensitivity to negative outcomes. ConclusionsTogether, our findings highlight a role for the left STN in reward and loss processing and a potential role in addictive behaviors. These findings emphasize the cognitive-limbic function of the STN and its role as a physiologic target for neuropsychiatric disorders.
Read full abstract