Wheat (Triticum aestivum) loses 21.5% yield to pests and diseases annually (Savary et al. 2019). Among the wheat diseases, bacterial leaf streak (BLS) is a growing problem, costing $78.5 million in losses (https://cropprotectionnetwork.org/). In July 2022, we sampled winter wheat leaf samples at Volga (44.30, -96.92), South Dakota, USA with an estimated disease incidence of 40% (n=100). The typical symptoms were water-soaking with large necrotic and chlorotic streaks extending the length of the leaves and were strikingly similar to BLS. To isolate the pathogen, leaves were cut lengthwise into 1 cm pieces and surface-sterilized using a 10% NaOCl solution for 3 min, followed by 70% ethanol for 3 min, and then rinsed with sterile distilled water and placed in 500 ul of sterile distilled water for 5 min and using a sterile loop the water was streaked over a plate of Nutrient Agar (NA). Following Duveiller et al. (1997), the streaked plate was incubated in the dark at 28℃ for 48 h. Observed single colonies were sub-cultured thrice onto fresh NA plates to obtain a pure culture. We named the culture SD101. Bacteria were found to be gram-negative with a colony morphology initially raised, smooth, and white that later turned yellow. DNA was extracted using the Wizard HMW DNA Extraction Kit (Promega, Madison, WI) following the manufacturer's protocol, and sequenced using Nanopore MinION R9.4 (Oxford Nanopore Technology). We used the Rapid Annotation Using Subsystems Technology approach (Aziz eal. 2008) to extract the 16S rDNA, DNA gyrase subunit B (gyrB), and translation initiation factor IF-2 (infB) gene sequences that were deposited in GenBank under accession numbers PP329908.1 for 16S rDNA, PP496481 for infB, and PP328920.1 for gyrB. Homology analysis using CLC Genomics Workbench 22.0.2 (QIAGEN) and BLASTn against the GenBank nucleotide database resulted in a 99.74% match (1543/ 1547 bp) of the 16S sequence, 99.59% match (2674/ 2685 bp) of the infB sequence, and 99.42% match (2396/ 2410 bp) of the gyrB sequence with Pantoea ananatis strain AJ13355 (AP012032). To test pathogenicity, seeds of spring wheat breeding line SD4892 were planted in 30 cm × 30 cm pots in a greenhouse under a 16 h light photoperiod. The inoculum was prepared from 48-h-old NA plates of SD101 rinsed with 1X Phosphate Buffer Saline (PBS buffer), adjusted to an OD600 = 1.0, and amended with two drops of Tween 20 (polyoxyethylene sorbitol ester, Millipore Sigma). PBS with Tween 20 was used as a negative control. The inoculum was sprayed on 15 replicates of 15-day-old seedlings, kept at 95% relative humidity for 48 h, then moved to the greenhouse at 23 to 25°C. The symptoms appeared as water soaking that later turned to necrotic streaks with surrounding chlorosis on all 15 inoculated plants while control plants remained healthy. The pathogen was re-isolated from the leaves as described above. The 16S rDNA, infB, and gyrB sequences amplified and sequenced were identical to the gene sequences from the whole genome sequencing. The experiment was repeated with the same results, completing Koch's postulates. Although P. ananatis is pathogenic on corn, rice, and other plant species in the United States (Coutinho et al. 2009), and was reported pathogenic on wheat in Poland (Krawczyk et al. 2020), this is the first report of its pathogenicity on wheat in the United States. The prevalence, and incidence of BLS disease caused by P. ananatis in wheat is needed to estimate its threat to wheat production and to develop management strategies.
Read full abstract