BackgroundDiabetes mellitus (DM) is a major risk factor for atrial structural remodeling and atrial fibrillation (AF). Calpain activity is hypothesized to promote atrial remodeling and AF. ObjectiveThe purpose of this study was to investigate the role of calpain in diabetes-associated AF, fibrosis, and calcium handling dysfunction. MethodsDM-associated AF was induced in wild-type (WT) mice and in mice overexpressing the calpain inhibitor calpastatin (CAST-OE) using high-fat diet feeding followed by low-dose streptozotocin injection (75 mg/kg). DM and AF outcomes were assessed by measuring blood glucose levels, fibrosis, and AF susceptibility during transesophageal atrial pacing. Intracellular Ca2+ transients, spontaneous Ca2+ release events, and intracellular T-tubule membranes were measured by in situ confocal microscopy. ResultsWT mice with DM had significant hyperglycemia, atrial fibrosis, and AF susceptibility with increased atrial myocyte calpain activity and Ca2+ handling dysfunction relative to control treated animals. CAST-OE mice with DM had a similar level of hyperglycemia as diabetic WT littermates but lacked significant atrial fibrosis and AF susceptibility. DM-induced atrial calpain activity and downregulation of the calpain substrate junctophilin-2 were prevented by CAST-OE. Atrial myocytes of diabetic CAST-OE mice exhibited improved T-tubule membrane organization, Ca2+ handling, and reduced spontaneous Ca2+ release events compared to littermate controls. ConclusionThis study confirmed that DM promotes calpain activation, atrial fibrosis, and AF in mice. CAST-OE effectively inhibits DM-induced calpain activation and reduces atrial remodeling and AF incidence through improved intracellular Ca2+ homeostasis. Our results support calpain inhibition as a potential therapy for preventing and treating AF in DM patients.