Abstract

Calpains are a family of Ca2+-dependent cysteine proteases involved in many important biological processes, where they selectively cleave relevant substrates at specific cleavage sites to regulate the function of the substrate proteins. Presently, our knowledge about the function of calpains and the mechanism of substrate cleavage is still limited due to the fact that the experimental determination and validation on calpain bindings are usually laborious and expensive. This chapter describes LabCaS, an algorithm that is designed for predicting the calpain substrate cleavage sites from amino acid sequences. LabCaS is built on a conditional random field (CRF) statistic model, which trains the cleavage site prediction on multiple features of amino acid residue preference, solvent accessibility information, pair-wise alignment similarity score, secondary structure propensity, and physical-chemistry properties. Large-scale benchmark tests have shown that LabCaS can achieve a reliable recognition of the cleavage sites for most calpain proteins with an average AUC score of 0.862. Due to the fast speed and convenience of use, the protocol should find its usefulness in large-scale calpain-based function annotations of the newly sequenced proteins. The online web server of LabCaS is freely available at http://www.csbio.sjtu.edu.cn/bioinf/LabCaS .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.