Single crystal (SC) perovskites exhibit superior stability and optoelectronic performance compared to polycrystalline ones, offering significant potential for high-performance and low-cost photovoltaic/optoelectronic applications. However, conventional SC growth processes often require intricate cutting or transferring of SC in the manufacturing of optoelectronic devices. High-resolution, in-situ, and scalable fabrication of perovskite SC arrays remain challenging. In this work, we propose a method for in-situ deposition of cosolvent based perovskite precursor solutions using electrohydrodynamic (EHD) printing technology. The addition of a cosolvent (which exhibits good chemical compatibility with the precursor and the main solvent, accompanied by lower solubility and vapor pressure) to the mixed solution promotes early-stage supersaturation and nucleation in the solution, enabling precise control over crystal morphology, size, and positioning through in-situ EHD printing. The effect of different cosolvent ratios on SC growth and the inhibition of parasitic crystallization by altering the contact angle of substrate were investigated. Finally, the parameters for precise control of the EHD printing process were investigated, enabling the growth of SC arrays ranging from 1 to 35 μm in size. This strategy offers a direct patterning approach for SC perovskite preparation without complex temperature control or multi-step operation. The printed patterns exhibit high resolution and excellent uniformity, offering significant potential for manufacturing SC-based perovskite optoelectronic devices with precise size and positioning control.
Read full abstract