This review presents a comprehensive examination of recent advancements and findings related to return-temperature reduction in District Heating (DH) systems, with a focus on enhancing overall system efficiency at end-user sites. The review categorizes and clarifies various return-temperature reduction techniques, emphasizing aspects such as building energy performance, heat emitters, thermostatic radiator valves, and substation units. One shall note that return temperature is not a parameter that can be directly controlled within a DH system; instead, it is influenced indirectly by adjusting various system parameters throughout the design, commissioning, operation, and control phases. Key insights include the direct impact of heat demand on return temperatures; the pivotal role of indoor heating systems in optimizing thermal energy use in relation to heat demand; the significance of thermostatic radiator valves in regulating heat output and maintaining low return temperatures; the advantages of ventilation radiators and add-on fans in enhancing radiator efficiency; the necessity for effective substation operation to improve system cooling capacity; and the critical role of operational control strategies in achieving optimal system performance. These findings underscore the need for integrated approaches in DH system design and operation to achieve lower return temperatures and improve overall system efficiency.
Read full abstract