The distributions of peptide-immunoreactive nerve fibres and cell bodies in lumbosacral paravertebral sympathetic ganglia of young cats were analysed with antibodies to calcitonin gene-related peptide, enkephalin, neurotensin, somatostatin, substance P, galanin, neuropeptide Y and vasoactive intestinal polypeptide. Fairly dense networks of nerve fibres showing enkephalin-, neurotensin-, somatostatin- or substance P-like immunoreactivity were observed in the ganglia. Double-staining experiments revealed that enkephalin- and somatostatin-immunoreactive nerve fibres preferentially surrounded calcitonin gene-related peptide- and/or vasoactive intestinal polypeptide-immunoreactive cell bodies. Neurotensin- and substance P-immunoreactive nerve fibres were mainly associated with neurons showing neuropeptide Y and/or galanin-like immunoreactivity. Occasional nerves containing calcitonin gene-related peptide-, galanin-, neuropeptide Y- or vasocative intestinal polypeptide-like immunoreactivity were observed. These fibres did not seem to have any direct regional distribution within the ganglia. In kittens surviving for three months after early postnatal sciatic nerve resection, no calcitonin gene-related peptide-immunoreactive cell bodies could be detected in ganglia ipsilateral to the operation. In contrast, vasoactive intestinal polypeptide-like immunoreactivity, which partly co-exists with calcitonin gene-related peptide, was observed to the same extent as in control ganglia. Furthermore, almost all of the somatostatin-immunoreactive varicose nerve fibres had disappeared, whereas a fairly dense network of calcitonin gene-related peptide-immunoreactive nerve fibres could be observed. This change was paralleled by an increased content of nerve fibres that were immunoreactive to antibodies against the growth-associated protein GAP-43 (also known as B-50). The present findings suggest that experimental perturbations where postganglionic neurons are separated from their target areas by axotomy, not only induce differential changes in neurotransmitter expression in the principal ganglion cells, but also in preganglionic sympathetic neurons projecting to the ganglia. One possible explanation for the occurrence of an axotomy-induced network of calcitonin gene-related peptide-immunoreactive nerve fibres, is that extrinsic sensory nerve fibres grow into the ganglia after the sciatic nerve lesion. Thus, these findings seem to suggest one additional possibility with regard to the question of a possible interaction between sympathetic and sensory neurons after peripheral nerve injury.