This article presents the detailed study of rotor tip leakage related phenomena in a low speed axial compressor rotor passages for three sweep configurations [Unswept (UNS), Tip Chordline Swept (TCS) and Axially Swept (AXS)]. Fifteen domains are numerically studied with 5 sweep configurations (0°, 20°TCS, 30°TCS, 20°AXS, and 30°AXS) and for 3 tip clearances (0.0%, 0.7% and 2.7% of the blade chord). Results were well validated with experimental data. Observations near the tip reveal that UNS rotor shows high sensitivity than the swept rotors in the blade pressure distribution with change in tip clearance. AXS rotor has high loading capability and less tip clearance effect on blade loading at the near stall mass flow. Downstream shift of the vortex rollup along the chord is observed with increased flow coefficient and increment in the tip gap height. In particular, the effect of flow coefficient is more predominant on this effect. Tip vortex-related flow blockage is less with the swept rotors. Among the rotors, the AXS rotor is found to incur low total pressure losses attributable to tip leakage. Effect of incidence is observed on the flow leakage direction.