The Shulu Sag, located in the southwestern corner of the Jizhong Depression, Bohai Bay Basin of east China, is a NE–SW trending, elongate Cenozoic half-graben basin. The lowermost part of the third member of the Shahejie Formation in this basin is characterized by continental rudstone and calcilutite to calcisiltite facies. Based on core observation and regional geologic analysis, seismites are recognized in these lacustrine deposits, which include soft-sediment deformation structures (sedimentary dikes, hydraulic shattering, diapir structures, convolute lamination, load-flame structures, ball-and-pillow structures, loop bedding, and subsidence structures), synsedimentary faults, and seismoturbidites. In addition, mixed-source rudstones, consisting of the Paleozoic carbonate clasts and in situ calcilutite clasts in the lowermost submember of Shahejie 3, appear in the seismites, suggesting an earthquake origin. A complete representative vertical sequence in the lowermost part of the third member found in well ST1H located in the central part of the Shulu Sag shows, from the base to the top: underlying undeformed layers, synsedimentary faults, liquefied carbonate rocks, allogenetic seismoturbidites, and overlying undeformed layers. Seismites are widely distributed around this well and there are multiple sets of stacked seismites separated by undeformed sediment. The nearby NW-trending Taijiazhuang fault whose fault growth index is from 1.1 to 1.8 and the NNE-trending Xinhe fault with a fault growth index of 1.3–1.9 may be the source of the instability to create the seismites. These deformed sedimentary layers are favorable for the accumulation of oil and gas; for example, sedimentary dikes can cut through many layers and serve as conduits for fluid migration. Sedimentary faults and fractures induced by earthquakes can act as oil and gas migration channels or store petroleum products as well. Seismoturbidites and mixed-source rudstones are excellent reservoirs due to their abundant primary or dissolved pores.
Read full abstract