Abstract

The approaches aimed at characterising specific damaging sinkholes have received limited attention compared with other ground instability phenomena (e.g. landslides). Moreover, the practicality of the trenching technique in combination with numerical dating and retro-deformation analysis for sinkhole site-investigations has been barely explored. This work illustrates the advantages of combining geomorphic mapping, electrical resistivity imaging (ERI), ground penetrating radar (GPR) and trenching for sinkhole characterisation and shows how the trenching technique contributes to fill significant gaps that neither geomorphic nor geophysical methods can address. Two large sinkholes (>200m long) related to the interstratal karstification of evaporites and generated by contrasting subsidence mechanisms (sagging, collapse) were investigated in the Fluvia Valley, NE Spain. Although GPR data may provide high resolution information on subsidence-related stratigraphic and structural features at shallow depth, the profiles acquired in the investigated sites with 100MHz shielded and 40MHz unshielded antennae provided limited insight into the internal geometry of the sinkholes due to reduced signal penetration related to the presence of conductive clayey material. The ERI sections satisfactorily imaged the general geometry of the sagging and collapse subsidence structures up to depths higher than 100m and clearly captured the basal contact of the low-resistivity sinkhole fill in the sections with adequate layout and resolution. The trenches, despite their limited depth (ca. 5m) allowed us to obtain valuable objective information on several key aspects of the subsidence phenomenon: (1) mechanisms (deformation style) and kinematics (progressive versus episodic); (2) limits of ground deformation; (3) temporal evolution (expansion versus contraction); (4) chronology and timing of most recent deformation phase; (5) rates of subsidence and sedimentation; and (6) the role played by subsidence in the development of lacustrine environments and the associated sedimentation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call