Land subsidence is a worldwide geological and environmental risk caused by natural occurrences and human actions. Its effects include a range of socio-economic, environmental, and hydrogeological consequences, such as damage to infrastructure like buildings, roads, bridges, and pipelines, as well as increased flooding and reduced groundwater storage capacity. Due to these diverse impacts, it is crucial to monitor the spatial and temporal scope of land subsidence. This study presents an investigation into land subsidence within the West-Qurna oil field, a large oil reservoir situated in Iraq's Basrah governorate. The study employs Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) analysis from the European Space Agency Sentinel 1A over six years, from June 2017 to May 2023. The Stanford Method for Persistent Scatterers (StaMPS) has been utilised to assess the scale and magnitude of land deformations in this region. Results revealed a notable subsidence within the central urban area of the oil field, forming an ellipsoidal subsidence bowl spanning 86 km2. The peak subsidence rate is identified at −13.2 ± 0.4 mm/yr within this bowl, with a cumulative vertical displacement of 75 mm throughout the six-year observation period. Furthermore, uplifting phenomena are also detected at the study area's peripheries, reaching a maximum rate of 12 ± 0.4 mm/yr and a cumulative shift of 54 mm. Temporal analysis showcases a significant alteration in subsidence rates, with rates of −18 mm/yr observed between 2017 and 2020, followed by −5 mm/yr post-2020. This change is attributed to COVID-19-related oil production reductions enacted by the government to boost prices. Our analysis points toward oil extraction as a probable primary driver of subsidence in the studied area, although a deeper probe into the impact of groundwater extraction for reservoir injection remains essential.
Read full abstract