A number n is practical if every integer in [1, n] can be expressed as a subset sum of the positive divisors of n. We consider the distribution of practical numbers that are also shifted primes, improving a theorem of Guo and Weingartner. In addition, essentially proving a conjecture of Margenstern, we show that all large odd numbers are the sum of a prime and a practical number. We also consider an analogue of the prime k-tuples conjecture for practical numbers, proving the “correct” upper bound, and for pairs, improving on a lower bound of Melfi.
Read full abstract